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Given a connected crystalline structure, the set of paths and cycles of the

quotient graph of its bond net is embedded into a commutative ring structure.

Multiplication combines walks to build up geodesics of the net whereas addition

stands symbolically for enumerating a collection of walks. Topological criteria

are used to de®ne zero divisors which enable the development of an algebraic

generator into a combination of geodesics that are in a one-to-one

correspondence with the vertices of the net. A ring mapping gives the

generating function of the coordination sequence in the net.

1. Introduction

Coordination sequences in nets are de®ned as the sequences

of numbers nk of neighbors in the kth coordination shell of

some ®xed vertex of the graph. In a recent paper, Grosse-

Kunstleve et al. (1996) showed that coordination sequences in

zeolites and some other simple crystal structures can be

described by generating functions GF(x) =
P

k nkxk which are

rational fractions in the ring R[x], that is, the generating

function is of the form

GF�x� � P�x�=Q�x�;

where P(x) and Q(x) are polynomials of the real variable x.

Explicit functions were obtained by direct computation of the

®rst terms of the series, assuming that extrapolation to the

whole sequence was licit.

More recent works (Conway & Sloane, 1997; Bacher et al.,

1999) have shown that coordination sequences can be

obtained rigorously in some simple root lattices. The argument

used in these papers was of a geometrical nature; only partial

results are available, however. The simple root lattice A3, for

instance, describes only one of the two vertices contained in

the primitive cell of the diamond net.

The aim of this work is to report an algebraic method for

calculation of generating functions. The analysis is performed

in the framework of the quotient graph of the net as de®ned by

Chung et al. (1984). First, the formalism is developed for

minimal nets (Beukemann & Klee, 1992) through their inte-

gral embeddings (Eon, 1999); then it is extended to other

cases.

2. Geodesics in integral embeddings

The nomenclature used throughout the paper is the same as

that used by Eon (1999). For convenience, this section begins

with a summing up of the main concepts leading to the de®-

nition of integral embeddings.

The quotient graph of a net is the ®nite graph G obtained by

mapping translationally equivalent edges and translationally

equivalent vertices of the net on some edge and vertex of G

and respecting the adjacency relations. Let f be the corre-

sponding mapping. The integral embedding is de®ned as a

special embedding of the minimal net associated with the

quotient graph. It is obtained by somehow reversing the

mapping used for de®nition of the quotient graph. After the

graph with q edges ei (i = 1; . . . ; q) has been oriented, the

embedding is generated by mapping the edges onto an

orthonormal basis ei (i = 1; . . . ; q) of the Euclidian space Eq.

Some point O of the embedding is chosen as the origin; the

lines in the embedding are then equipollent to unit vectors of

the basis, and the points M =
P

i ti ei have integer coordinates.

Let gM be a geodesic of the embedding, i.e. a shortest path,

from the origin O to the point M, and |gM| be the length of the

geodesic, that is, the number of lines in the respective path.

The generating function of the coordination sequence asso-

ciated with the origin can be obtained by summation of an

in®nite series over all the points of the embedding,

GF�x� �P
M

xjgM j: �1�

As a path, the geodesic is an alternate sequence of points Pi

and lines li. In order to characterize geodesics from the

viewpoint of the quotient graph, we de®ne the walk f(gM) in

G, corresponding to the alternate sequence of vertices f(Pi)

and (oriented) edges f(li), and consider the mapping h of the

geodesic into the 1-chains group of G de®ned by

h�gM� �
P

i

f �li�:

Clearly, translationally equivalent lines traversed in opposite

directions along the geodesic will cancel out by pair in h(gM).

On the other hand, since the lines li are equipollent to basis

vectors of Eq, the coef®cient of the edge ei after mapping by h

is exactly equal to the coordinate of the point M along the axis

associated with the vector ei , yielding
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h�gM� �
P

i

tiei:

On geometrical grounds, the coordinate ti corresponds clearly

to the minimum number of times a line mapping the edge ei of

G must be crossed from O to M, so that

j f �gM�j � jgMj �
P

i

jtij � jh�gM�j;

where the summation index runs over all the edges of the

graph, and the length of the 1-chain has been de®ned in the

right-hand part of the equation. Let �M be the difference,

jgMj � j f �gM�j � jh�gM�j � �M:

The presence of this last term in the topological distance, if

needed, means that some translationally equivalent lines must

be crossed at least once in each direction along the geodesic.

As an example, look at the geodesic g from O1 to O3 in the

ReO3 net represented in Fig. 1. Although not an integral

embedding, this structure contains the adequate features for

illustrating the discussion. The points Pi are all mapped on the

same vertex M of the quotient graph drawn in Fig. 2; points

O1, O2 and O3 are mapped on vertices A, B and A, respec-

tively. The lines l1, l2, l3 and l4 are mapped on the edgesÿe1, e3,

ÿe4 and e1, respectively; the ®rst and last lines of g, namely l1
and l4, are translationally equivalent but traversed in opposite

directions. The previous de®nitions give

g � �O1 l1 P1 l2 O2 l3 P2 l4 O3�;
f �g� � �Aÿ e1Me3Bÿ e4Me1A�;
h�g� � e3 ÿ e4;

� � j f �g�j ÿ jh�g�j � 4ÿ 2 � 2:

In this case, the 1-chain h(g) de®nes a cycle of length 2 which

does not contain the origin of the walk f(g). More generally,

we call the support of the 1-chain, and by extension, of the

geodesic, the directed subgraph consisting of the edges ei

corresponding to non-zero coordinates ti together with the

incident vertices, the orientation of the edge in the support

being taken according to the sign of the coordinate. The

support is not necessarily a connected graph. In the previous

example, the support of g is the directed 2-cycle consisting of

the two vertices M and B, and the oriented edges e3 and ÿe4.

Since the 1-chain h(gM) has been obtained from a walk in G

between two of its vertices, it can be decomposed, generally

not in a unique way, into a path p between these two vertices

(unless they are translationally equivalent) and a set of

possibly disjoint and nk times repeated cycles Ck of G covering

the respective support, and respecting the orientation of its

edges,

h�gM� � p�P
k

nkCk: �2�

We will call g-chains such 1-chains of G mapped by a geodesic.

Reciprocally, let a be any 1-chain of the above form, i.e.

obtained by adding a path and some cycles of G in which each

edge is always traversed in the same direction. By construction

of integral embeddings, the 1-chain a de®nes the coordinates ti
of some point M in the embedding and satis®es

a �P
i

tiei � h�gM�

for any geodesic gM ; a is thus a g-chain.

Let S be the support of a, and (S) be the smallest connected

subgraph of G containing S. It is clear that one can build a

walk in (S) between the extremities of the chosen path by

using the 1-chain a together with the edges of (S) which do not

belong to S, each being traversed in both opposite directions.

The resulting walk maps a geodesic gM in the embedding,

since, by construction, it is not possible to ®nd a shorter path.

The value of �M for the respective geodesic can thus be

obtained directly from the quotient graph as equal to the

minimum number of edges that must be added to turn the

chain into a connected walk starting from the vertex mapped

by the origin. It must be noticed that this value depends only

on the support of the geodesic, and not on the chosen point M.

3. The chains ring

Our main concern in this and the following sections will be to

generate exactly one g-chain per point of the integral

embedding, by composing paths and cycles of the quotient

Figure 1
ReO3 net with a geodesic between O1 and O3 marked by arrows.

Figure 2
Labelled quotient graph of the ReO3 net.



graph. This can be performed by embedding g-chains in a

commutative ring structure.

We recall that a ring is de®ned in elementary algebra (Lang,

1995) as a set R, together with two binary operations, addition

and multiplication, which satisfy the following conditions:

(i) (R, +) is an abelian group;

(ii) multiplication is associative and owns a unit in R;

(iii) multiplication is distributive relative to addition.

As it is more convenient in the following to use an exponential

notation instead of an additive one, we introduce formally a

new set of elements, called x-chains, that are in a one-to-one

correspondence with g-chains,

xG � fx aja : g-chain of Gg:
Next, we consider the set Z[xG] consisting of all possible, ®nite

or in®nite, formal linear combinations of x-chains with integer

coef®cients. Alternatively, an element of Z[xG] may be

thought of as a mapping of the points of the embedding on the

set of integers, i.e. a subset of weighted points. Elements of this

set will be referred to as chains patterns. Two especially

important elements are the zero combination, denoted 0, for

which the coef®cient of each x-chain is null, and the unit

combination, denoted 1, corresponding to the null g-chain

(1� x0). The sum of two elements in Z[xG] is naturally de®ned

as the combination obtained after adding the coef®cients of

the respective x-chains,P
a

ma x a �P
a

na x a �P
a

�ma � na� x a �ma; na 2 Z�:

It is immediately seen from this de®nition that (Z[xG], +) is an

abelian group with the zero combination as an additive unit.

Multiplication in Z[xG] is presently de®ned to allow the

unique combination of paths and cycles into g-chains. Let a

and b be two g-chains, one of which at least is only composed

of cycles of G. The product in Z[xG] of xa and xb is de®ned by

comparison of the supports of the g-chains. We will say that

two g-chains a and b of G have compatible supports Sa and Sb

whenever the edges which are common to both digraphs have

the same orientation; it is clear then that a + b is a g-chain, the

support of which, Sa + b, is the union of both supports, i.e. the

smallest digraph containing both supports Sa and Sb, and

moreover satis®es a condition of additivity of lengths,

Sa� b � Sa [ Sb;

ja� bj � jaj � jbj:
The product of the two x-chains, denoted with the asterisk

symbol, is the x-chain de®ned by the exponential property,

x a � x b � x a� b � x b� a:

In this case, the additivity condition shows that the product of

x-chains amounts to composing a geodesic by putting two

geodesics together, without unnecessary wandering about the

lines of the embedding. Otherwise, when two g-chains have

incompatible supports, or when both of them contain a path

contribution, we set the product to be null, which discards the

combination. The product of any two chains patterns is

formally de®ned by setting bilinearity of the product

mx a � nx b � mnx a� b;

and distributivity of multiplication relative to addition. This

product is clearly commutative.

Associativity of multiplication will be veri®ed in the case of

three x-chains, two of them at least being composed only of

cycles; the supports Sa, Sb and Sc are ®rst assumed to be

compatible by pairs. The property is a straightforward

consequence of associativity of the union of compatible

supports and associativity of 1-chains addition,

Sa� �b� c� � Sa [ Sb� c � Sa [ �Sb [ Sc� � �Sa [ Sb� [ Sc

� S�a� b� � c;

x a � �x b � x c� � x a � �x b� c� � x a� �b� c� � x �a� b� �c

� �x a� b� � x c � �x a � x b� � x c:

If the supports are not compatible by pairs, or at least two

x-chains contain a path contribution, it is easily veri®ed that

the ternary product is null, whatever the calculation sequence

may be. Thus, multiplication of x-chains is associative.

Extension to the product of chains patterns is a natural

consequence of bilinearity, distributivity of multiplication over

addition and associativity of x-chains multiplication.

By de®nition, the support of the null chain is empty and, as

such, it is compatible with the support of any other g-chain.

The unit combination is thus the unit for multiplication,

1 �P
a

ma x a � x0 �P
a

ma x a �P
a

ma�x0 � x a� �P
a

ma x a� 0

�P
a

ma x a:

This shows that (Z[xG], +, �) is a ring.

The main property of this structure is the existence of zero

divisors. No cycle of G, for example, can be walked over in

both orientations in a geodesic. Since the respective supports

are not compatible, this observation translates now to the ring

formalism,

x a � xÿa � 0: �3�
It is clear then that the chains patterns ring is not a structural

extension of the known 1-chains group of graph theory. The

exponential notation helps to avoid confusion.

We will now illustrate the whole method of determination

of generating functions in the simplest case where G has a

single vertex and one loop a. The integral embedding corre-

sponds to a linear lattice with one point and one line per unit

cell, with divalent coordination. Following methods used in

combinatorial analysis (Jordan, 1958), we de®ne the generator

F in Z[xG],

F � 1� P
n> 0

x na

� �
� 1� P

m> 0

xÿma

� �
:

This product describes every possible choice of n loops run in

the positive direction with m loops run in the opposite

direction. The expression is developed with the help of (3), in

particular, to obtain
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F � 1� P
n> 0

x na � P
m> 0

xÿma:

It appears that F corresponds to the combination of all

x-chains of G with unit coef®cient. The generator is mapped

on the generating function of the coordination sequence,

GF(x), of the linear embedding by substituting the symbol of

the loops in x-chains by their length; here |a | = |ÿa | = 1.

Remembering that, in R[x],P
n� 0

x n � 1=�1ÿ x�;

we have

GF�x� � 1� P
n> 0

x n � P
m> 0

x m

� 1� 2x=�1ÿ x�
� �1� x�=�1ÿ x�:

4. The generator inverse

More generally, for a graph G with a set of paths pj from some

vertex chosen as an origin to all other vertices and a set of

oriented cycles Ck, the generator of x-chains in Z[xG] is given

by

F �
�

1�P
j

x pj

�
�Q

k

1� P
n> 0

x nCk

� �
:

In order to avoid manipulating in®nite sums, we observe that

each factor of F owns an inverse in Z[xG], since we have

1ÿ xCk
ÿ � � 1� P

n> 0

x nCk

� �
� 1;�

1ÿP
j

x pj

�
�
�

1�P
j

x pj

�
� 1:

This allows the inverse F ÿ1 of the generator to be de®ned,

Fÿ1 �
�

1ÿP
j

x pj

�
�Q

k

1ÿ x Ck� �: �4�

From comparison of the expressions of the generator and its

inverse, it follows that inversion is truly a practical device

which allows one to work on ®nite products during the

calculation. In®nite summations on cycles are turned on again

at the end of the development by back inversion of the result.

5. The graphite net

Geodesics between two vertices of a net are generally not

unique, and branching off appears along the path. However, it

is always possible to privilege some branches and set the other

ones to zero. This is an arbitrary choice that no general law can

express; it needs only to be coherent. The concept is best

illustrated by calculating the generating function for the

coordination sequence of the graphite net, whose quotient

graph G = K3
2 is represented in Fig. 3. As was discussed by Eon

(1999), the graphite structure is the orthogonal projection of

the integral embedding of the minimal net associated with the

graph K3
2. The projection is along the co-cycle space, onto the

cycle space, and does not affect topological properties. In

particular, the coordination sequences are the same in both

embeddings. This allows calculations to be performed in the

integral embedding.

If we choose vertex A as the origin, the three different paths

are simply the three edges e1, e2 and e3 of the graph K3
2 . The six

oriented cycles are given by

aij � ei ÿ ej; i 6� j; i; j � 1; . . . ; 3:

The multiplication laws in Z[xG] give

x aij x ajk � x aji x akj � 0;

x ej x aij � 0;

where the asterisk symbol for multiplication was omitted for

practical calculations.

The inverse of the generator is thus

Fÿ1 � �1ÿ x e1 ÿ x e2 ÿ x e3 ��1ÿ x a12 ÿ x a21 ��1ÿ x a23 ÿ x a32 �
� �1ÿ x a31 ÿ x a13 �
� 1ÿP

i

x ei ÿP
i;j

x aij

�P
ij

x ei x aij �P
ijk

x ei x ajk �P
ijk

x aij x aik �P
ijk

x aij x akj

ÿP
ijk

x ei x aij x aik ÿP
ijk

x ei x aij x akj :

It appears now that not all the terms of this development do

represent different g-chains. For instance, x e1 x a23 and x e2 x a13

map two geodesics between the origin and the point repre-

sented by the chain e1 � e2 ÿ e3.

Let us call these parallel geodesics and write

e1 � a23 ' e2 � a13:

In order to avoid such repetitions, redundant products are set

to zero:

x e1 x a32 � x e2 x a13 � x e3 x a21 � 0:

It must be kept in mind that whole sets of geodesics, such as

those represented by the chains patternP
n> 0

x e2 x na13 ;

are then lost when inverting F ÿ1 back to the generator. There

is certainly no loss of points of the embedding, however, since

these same points are mapped by the equivalent non-null

chains pattern,

Figure 3
Labelled quotient graph of the graphite net.



P
n> 0

x e1 x �nÿ1�a13 x a23 :

Consequently, of course, products such as xe1 x a12 x a32 have to

be cancelled out to obtain the ®nal development of Fÿ1. This

amounts to avoid branching along the privileged geodesic.

Back inversion and mapping on the generating function of

the coordination sequence of the graphite net are advanta-

geously performed in a single step. It is suf®cient, notwith-

standing changes in sign, to substitute x-cycles by the sum of

geometric series in the expression of the generator inverse.

For example, the chains patterns

1; x e1 � x e2 � x e3 ; x a13 and x e1 x a12 x a13

are mapped, respectively, in R[x] upon

1; 3x; x 2=�1ÿ x 2� and x �x 2=�1ÿ x 2��2;
where account has been taken of the lengths

jeij � 1 and jaijj � 2:

Addition of all corresponding terms from the generator

inverse gives the generating function

GF�x� � 1� 3x� 6x 2=�1ÿ x 2� � 6x 4=�1ÿ x 2� 2
� 9x 3=�1ÿ x 2� � 6x 5=�1ÿ x 2� 2;

which simpli®es to

GF�x� � �1� x� x 2�=�1ÿ x�2:

6. The ReO3 net

The next example illustrates the calculation method in case

the support does not de®ne a connected walk. The task we

propose is to obtain the coordination sequence of the oxygen

atom, say O1, in the ReO3 structure, already described in

Figs. 1 and 2.

The three independent cycles of the quotient graph are

de®ned as

a � e1 ÿ e2;

b � e3 ÿ e4;

c � e5 ÿ e6:

The cycle part of the generator inverse is given by the product

Fÿ1
c � �1ÿ x a ÿ xÿa��1ÿ x b ÿ xÿb��1ÿ x c ÿ xÿc�:

It is clear that any cycle combination which does not contain

one of the two cycles a or ÿa cannot map a connected walk

between two oxygen atoms belonging to the same point lattice

A. To this end, one must adjoin one more edge, say e1, that has

to be crossed once in both directions, so that �A = 2 for the

respective g-chains.

Accordingly, the cycle part of the generator inverse is

divided into contributions from the supports de®ning

connected and unconnected walks, respectively,

Fÿ1
c � �ÿx a ÿ xÿa��1ÿ x b ÿ xÿb��1ÿ x c ÿ xÿc�

� �1ÿ x b ÿ xÿb��1ÿ x c ÿ xÿc�:

The ®rst term does not need to be developed since all products

correspond to compatible supports. Noting that the cycles

have a topological length of 2, we obtain the fraction

�2x 2=�1ÿ x 2���1� 2x 2=�1ÿ x 2��2: �5�
The second term has to be developed and each non-trivial

product corrected for connectivity by x �A, which yields

1� 4x 4=�1ÿ x 2� � 4x 6=�1ÿ x 2�2: �6�
Two paths (p1 = ÿe1 and p2 = ÿe2) lead from vertex A to M

and eight equivalent paths, such as p3 = e3ÿ e1, lead from A to

the other two oxygen vertices. There is no parallel geodesic in

this case so that the calculation can be performed separately

for each path, only taking account of compatibility conditions.

The respective parts of the generator inverse are now

written

xÿe1 Fÿ1
c � xÿe1 �1� xÿa��1� x b � xÿb��1ÿ x c ÿ xÿc�;

x e3ÿe1 Fÿ1
c � x e3ÿe1 �1� xÿa��1� x b��1ÿ x c ÿ xÿc�:

After weighting by the number of paths, these products are

mapped upon the following functions in R[x],

2x�1� x 2=�1ÿ x 2���1� 2x 2=�1ÿ x 2��2; �7�
8x 2�1� x 2=�1ÿ x 2��2�1� 2x 2=�1ÿ x 2��: �8�

Summing up all contributions from cycles and paths from (5)

to (8) yields the generator function

GF�x� � �1� 2x� 7x 2 � 4x 3 � 19x 4 � 2x 5 ÿ 3x 6�=�1ÿ x 2�3:

7. The common case

The examples that have been dealt with in the above sections,

as well as any other integral embedding, are particular in the

sense that all cycles of the quotient graph map a non-null

vector of the translation group in the corresponding crystal

structure. They are n-dimensional structures, with as many

dimensions as there are independent cycles in the quotient

graph. In the common case, some cycles of the quotient graph

de®ne rings, in the topological sense, of the crystal structure.

This will affect the calculation of coordination sequences in

two correlated aspects.

First, the x-chain that corresponds to the ring must

obviously be set equal to zero. Then, as a consequence of the

presence of rings, short cuts will be created in the net, and new

zero divisors have to be introduced in the algebraic structure

for eliminating the longest paths that are no longer geodesics.

In the case of rings with an even number of edges, both halves

of the ring also become parallel geodesics between two

opposite points. The following section gives a simple illustra-

tion of these concepts.
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8. The (93, 3.92) net

The title net, drawn in Fig. 4, is obtained by projection of the

(10, 3a) net (Wells, 1977) along any rotation axis of order

three. The two nets have the same quotient graph K4 repre-

sented in Fig. 5.

The cycles of K4 can be named after the region they enclose

in the plane of the ®gure; their positive orientation is de®ned

counterclockwise. This gives the seven cycles, a, b, c, ab, ac, bc

and abc, to which we must adjoin the opposite ones. We have,

for example,

a � e1 � e4 ÿ e2;

ab � e1 � e4 � e5 ÿ e3;

abc � e4 � e5 � e6:

In all, there are eight cycles of length 3 and six of length 4. The

cycle abc is chosen as the ring which de®nes the (93, 3.92) net

as it has been represented in the ®gure. We calculate the

generating function for the coordination sequence of points A

in this net.

To begin with, we note that ÿe6 is a short-cut to the path

e4 � e5 (we note e4 � e5 > ÿe6), so that any x-chain corre-

sponding to a g-chain containing both edges, such as xab, must

be set equal to zero. This occurs similarly for the other cycles

of length 4, leaving only the set S of the three cycles a, b, c and

their opposites.

The multiplication laws apply to S as follows:

x ax b � x bx c � x ax c � xÿaxÿb � xÿbxÿc � xÿaxÿc � 0;

and restrain the development of the cycle part of the

generator inverse to the six cycles of S and the six double

products for each cycle and the opposite of the other two,

Fÿ1
c � �1ÿ x a ÿ xÿa��1ÿ x b ÿ xÿb��1ÿ x c ÿ xÿc�
� 1ÿ P

u2 S

xu � P
�u;v� 2 S 2; u 6� v

x uxÿv:

Since all cycles of S contain the vertex A, there is no need for a

connectivity correction (� = 0) and the following sum is

mapped in R[x]:

1� 6x 3=�1ÿ x 3� � 6x 6=�1ÿ x 3�2: �9�
One path of length 1, p1 = e1 and two paths of length 2, p2 =

e2 ÿ e4 and p3 = e3 � e6, lead from vertex A to vertex B. Paths

of length 3, such as e2 � e5 � e6, have short cuts among paths

of length 2 (p2 in this case), and need not be considered.

The contribution to the generator inverse from the ®rst path

is written as

x e1 Fÿ1
c � x e1

�
1ÿP

u2S

x u � P
�u;v�2S 2; u6�v

x uxÿv

�
� x e1 �1ÿ x a ÿ x b ÿ xÿb ÿ xÿc � x axÿb

� x bxÿc � x axÿc�;
which is mapped in R[x] on

x� 4x 4=�1ÿ x 3� � 3x 7=�1ÿ x 3�2: �10�
Although the other two paths, p2 and p3, are symmetrical

relatively to the automorphisms group of K4 that leave the

ring invariant, their contributions to the generator inverse

must be dealt with one by one in order to account for parallel

geodesic. We have, for p2,

x e2 ÿ e4 �1ÿ xÿa ÿ x b ÿ x c ÿ xÿc � x bxÿc � x cxÿa � xÿax b�:
However, the walk p2 ÿ c is not a geodesic since e1 � b is a

short cut,

p2 ÿ c � �e2 ÿ e4� ÿ �e6 � e3 ÿ e1� > e2 � e5 ÿ e3 � e1

� b� e1:

We must set

x p2 xÿc � 0

and consequently

x p2 xÿcxb � 0:

The contribution of the path reduces to

x e2 ÿ e4 �1ÿ xÿa ÿ x b ÿ x c � x cxÿa � xÿax b�:
For p3, we have

x e3 � e6 �1ÿ x a ÿ xÿa ÿ xÿb ÿ x c � x axÿb � x cxÿa � x cxÿb�:
It can be seen as above that

Figure 4
The (93, 3.92) net.

Figure 5
Labelled quotient graph of the (93, 3.92) net.



p3 � a > e1 ÿ b;

p3 ÿ a ' c� p2:

The contribution of this path is thus reduced by the presence

of both short cut and parallelism to

x e3 � e6 �1ÿ xÿb ÿ x c � x cxÿb�:
The contributions from both paths of length 2 are mapped in

R[x] on the function

2x 2 � 5x 5=�1ÿ x 3� � 3x 8=�1ÿ x 3�2: �11�
The generating function for the (93, 3.92) net is given by

adding expressions (9)±(11):

GF�x� � �1� 3x� 6x 2 � 4x 3 � 6x 4 � 3x 5 � x 6�=�1ÿ x 3�2:

9. Summary

A characteristic ring structure has been associated with each

net, allowing the formal de®nition of an algebraic generator of

the geodesics. The correct de®nition of zero divisors in the ring

is the key for determining the coordination sequences of the

net; it allows the development of the generator into an

expression that is a one-to-one mapping of the vertices of

the net by geodesics. Zero divisors are obtained by applying

three basic topological properties of the chains, which were

described as compatibility, parallelism and short cuts.

Although very simple examples have been analyzed in this

work, it should be clear that parallelism brings up some

arbitrary choices and needs to be examined with special care.

Branching appears whenever the support of a g-chain can be

decomposed in several ways into a path and some cycles of the

quotient graph. All respective products but one should be set

to zero. In order to keep internal coherence, however, the

analysis of parallelism should be carried by a growing number

of cycles.

The following steps are then suggested as a basis for an

algorithm to ®nd the generating function for the coordination

sequence of a given crystal structure:

(i) Determine the quotient graph of the net, identifying all

the cycles that correspond to topological rings of the structure;

write short-cut relationships.

(ii) Write the generator inverse, discarding the paths and

cycles that do not represent geodesics or become parallel

geodesics because of short-cuts.

(iii) De®ne zero divisors applying compatibility conditions.

Develop accordingly the cycle part of the generator inverse

while keeping register of the points the corresponding

geodesics reach; points already attained de®ne parallel

geodesics and new zero divisors must be stored. Complete the

development of the generator inverse by including the path

part and following the same rule to de®ne parallel geodesics.

(iv) Map each term of the development on the corre-

sponding fraction in the ring of polynomials, correcting for

connectivity after analysis of the respective support, and sum

up to obtain the generating function.
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